Since the 1970s, theories of deformation and failure of amorphous, solidlike materials have started with models in which stress-driven, molecular rearrangements occur at localized flow defects via shear transformations. This picture is the basis for the modern theory of shear transformation zones (STZs), which is the focus of this review. We begin by describing the structure of the theory in general terms and by showing several applications, specifically, interpretation of stress-strain measurements for a bulk metallic glass, analysis of numerical simulations of shear banding, and the use of the STZ equations of motion in free-boundary calculations. In the second half of this review, we focus for simplicity on what we call an athermal model of amorphous plasticity, and use that model to illustrate how the STZ theory emerges within a systematic formulation of nonequilibrium thermodynamics.