Magnetic Faraday rotation is widely used in optics. In natural transparent
materials, this effect is very weak. One way to enhance it is to incorporate
the magnetic material into a periodic layered structure displaying a high-Q
resonance. One problem with such magneto-optical resonators is that a
significant enhancement of Faraday rotation is inevitably accompanied by strong
ellipticity of the transmitted light. More importantly, along with the Faraday
rotation, the resonator also enhances linear birefringence and absorption
associated with the magnetic material. The latter side effect can put severe
limitations on the device performance. From this perspective, we carry out a
comparative analysis of optical microcavity and a slow wave resonator. We show
that slow wave resonator has a fundamental advantage when it comes to Faraday
rotation enhancement in lossy magnetic materials.