Abstract
Synthesis of Doped Graphene Nanoribbons from Molecular and Polymeric Precursors
by
Ryan Randal Cloke
Doctor of Philosophy in Chemistry
University of California, Berkeley
Professor Felix Fischer, Chair
As electronic devices continue to shrink and energy problems continue to grow, nanoscale materials are becoming increasingly important. Graphene is a material with exceptional promise to complement silicon in next-generation electronics because of its extraordinary charge carrier mobility, while also finding a role in cutting-edge energy solutions due to its high surface area and conductivity. Improving on this material even further by reducing the width of graphene to nanoscale dimensions with atomically-precise dopant patterns is the subject of this thesis. Nanometer-wide strips of graphene, known as graphene nanoribbons (GNRs), offer the advantages of semiconducting behavior, combined with more accessible surface area compared to bulk graphene (Chapter 1). Additionally, it is demonstrated that GNRs can be doped with atomic precision, allowing for intricate modulation of the electronic properties of this material, which was studied by STM, STS, and nc-AFM (Chapter 2). Controlled growth of GNRs on surfaces is still an outstanding challenge within the field, and to this end, a variety of porphyrin-GNR template materials were synthesized (Chapter 3). The GNRs obtained in this work were also synthesized in solution, and it was shown that these materials possess excellent properties for applications in hydrogen storage, carbon dioxide reduction, and Li-ion batteries (Chapter 4). A prerequisite for solution-synthesized GNRs, conjugated aromatic polymers are an important class of materials in their own right. Therefore, Ring-Opening Alkyne Metathesis Polymerization was developed using conjugated, strained diynes (Chapter 5). The resulting conjugated polymers were explored both for their own materials properties due to a remarkable self-assembly process that was discovered, and also as precursors to GNRs (Chapter 6). This work advances the fundamental understanding of carbon-based nanostructures, as well as the large-scale production of GNRs for next-generation energy and electronics applications.