- Emani, Prashant;
- Liu, Jason;
- Clarke, Declan;
- Jensen, Matthew;
- Warrell, Jonathan;
- Gupta, Chirag;
- Meng, Ran;
- Lee, Che Yu;
- Xu, Siwei;
- Dursun, Cagatay;
- Lou, Shaoke;
- Chen, Yuhang;
- Chu, Zhiyuan;
- Galeev, Timur;
- Hwang, Ahyeon;
- Li, Yunyang;
- Ni, Pengyu;
- Zhou, Xiao;
- Bakken, Trygve;
- Bendl, Jaroslav;
- Bicks, Lucy;
- Chatterjee, Tanima;
- Cheng, Lijun;
- Cheng, Yuyan;
- Dai, Yi;
- Duan, Ziheng;
- Flaherty, Mary;
- Fullard, John;
- Gancz, Michael;
- Garrido-Martín, Diego;
- Gaynor-Gillett, Sophia;
- Grundman, Jennifer;
- Hawken, Natalie;
- Henry, Ella;
- Hoffman, Gabriel;
- Huang, Ao;
- Jiang, Yunzhe;
- Jin, Ting;
- Jorstad, Nikolas;
- Kawaguchi, Riki;
- Khullar, Saniya;
- Liu, Jianyin;
- Liu, Junhao;
- Liu, Shuang;
- Ma, Shaojie;
- Margolis, Michael;
- Mazariegos, Samantha;
- Moore, Jill;
- Moran, Jennifer;
- Nguyen, Eric;
- Phalke, Nishigandha;
- Pjanic, Milos;
- Pratt, Henry;
- Quintero, Diana;
- Rajagopalan, Ananya;
- Riesenmy, Tiernon;
- Shedd, Nicole;
- Shi, Manman;
- Spector, Megan;
- Terwilliger, Rosemarie;
- Travaglini, Kyle;
- Wamsley, Brie;
- Wang, Gaoyuan;
- Xia, Yan;
- Xiao, Shaohua;
- Yang, Andrew;
- Zheng, Suchen;
- Gandal, Michael;
- Lee, Donghoon;
- Lein, Ed;
- Roussos, Panos;
- Sestan, Nenad;
- Weng, Zhiping;
- White, Kevin;
- Won, Hyejung;
- Girgenti, Matthew;
- Zhang, Jing;
- Wang, Daifeng;
- Geschwind, Daniel;
- Gerstein, Mark
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.