We study the system-level effects of the introduction of large populations of
Electric Vehicles on the power and transportation networks. We assume that each
EV owner solves a decision problem to pick a cost-minimizing charge and travel
plan. This individual decision takes into account traffic congestion in the
transportation network, affecting travel times, as well as as congestion in the
power grid, resulting in spatial variations in electricity prices for battery
charging. We show that this decision problem is equivalent to finding the
shortest path on an "extended" transportation graph, with virtual arcs that
represent charging options. Using this extended graph, we study the collective
effects of a large number of EV owners individually solving this path planning
problem. We propose a scheme in which independent power and transportation
system operators can collaborate to manage each network towards a socially
optimum operating point while keeping the operational data of each system
private. We further study the optimal reserve capacity requirements for pricing
in the absence of such collaboration. We showcase numerically that a lack of
attention to interdependencies between the two infrastructures can have adverse
operational effects.