- Stern, Hannah L;
- Cheminal, Alexandre;
- Yost, Shane R;
- Broch, Katharina;
- Bayliss, Sam L;
- Chen, Kai;
- Tabachnyk, Maxim;
- Thorley, Karl;
- Greenham, Neil;
- Hodgkiss, Justin M;
- Anthony, John;
- Head-Gordon, Martin;
- Musser, Andrew J;
- Rao, Akshay;
- Friend, Richard H
Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1)
into two spin-triplet excitons (T1), could provide a means to overcome the
Shockley-Queisser limit in photovoltaics. SF as measured by the decay of S1 has
been shown to occur efficiently and independently of temperature even when the
energy of S1 is as much as 200 meV less than 2T1. Here, we study films of
TIPS-tetracene using transient optical spectroscopy and show that the initial
rise of the triplet pair state (TT) occurs in 300 fs, matched by rapid loss of
S1 stimulated emission, and that this process is mediated by the strong
coupling of electronic and vibrational degrees of freedom. This is followed by
a slower 10 ps morphology-dependent phase of S1 decay and TT growth. We observe
the TT to be thermally dissociated on 10-100 ns timescales to form free
triplets. This provides a model for "temperature independent", efficient TT
formation and thermally activated TT separation.