A number of theoretical calculations have studied the effect of radiation
reaction forces on radiation distributions in strong field counter-propagating
electron beam-laser interactions, but could these effects - including quantum
corrections - be observed in interactions with realistic bunches and focusing
fields, as is hoped in a number of soon to be proposed experiments? We present
numerical calculations of the angularly resolved radiation spectrum from an
electron bunch with parameters similar to those produced in laser wakefield
acceleration experiments, interacting with an intense, ultrashort laser pulse.
For our parameters, the effects of radiation damping on the angular
distribution and energy distribution of \emph{photons} is not easily
discernible for a "realistic" moderate emittance electron beam. However,
experiments using such a counter-propagating beam-laser geometry should be able
to measure such effects using current laser systems through measurement of the
\emph{electron beam} properties. In addition, the brilliance of this source is
very high, with peak spectral brilliance exceeding $10^{29}$
photons$\,$s$^{-1}$mm$^{-2}$mrad$^{-2}(0.1$% bandwidth$)^{-1}$ with
approximately 2% efficiency and with a peak energy of 10 MeV.