The perfect phylogeny problem is a classic problem in computational biology, where
we seek an unrooted phylogeny that is compatible with a set of qualitative characters. Such
a tree exists precisely when an intersection graph associated with the character set,
called the partition intersection graph, can be triangulated using a restricted set of fill
edges. Semple and Steel used the partition intersection graph to characterize when a
character set has a unique perfect phylogeny. Bordewich, Huber, and Semple showed how to
use the partition intersection graph to find a maximum compatible set of characters. In
this paper, we build on these results, characterizing when a unique perfect phylogeny
exists for a subset of partial characters. Our characterization is stated in terms of
minimal triangulations of the partition intersection graph that are uniquely representable,
also known as ur-chordal graphs. Our characterization is motivated by the structure of
ur-chordal graphs, and the fact that the block structure of minimal triangulations is
mirrored in the graph that has been triangulated.