We introduce an online tensor decomposition based approach for two latent
variable modeling problems namely, (1) community detection, in which we learn
the latent communities that the social actors in social networks belong to, and
(2) topic modeling, in which we infer hidden topics of text articles. We
consider decomposition of moment tensors using stochastic gradient descent. We
conduct optimization of multilinear operations in SGD and avoid directly
forming the tensors, to save computational and storage costs. We present
optimized algorithm in two platforms. Our GPU-based implementation exploits the
parallelism of SIMD architectures to allow for maximum speed-up by a careful
optimization of storage and data transfer, whereas our CPU-based implementation
uses efficient sparse matrix computations and is suitable for large sparse
datasets. For the community detection problem, we demonstrate accuracy and
computational efficiency on Facebook, Yelp and DBLP datasets, and for the topic
modeling problem, we also demonstrate good performance on the New York Times
dataset. We compare our results to the state-of-the-art algorithms such as the
variational method, and report a gain of accuracy and a gain of several orders
of magnitude in the execution time.