Excessive growth of suspended algae in eutrophic surface waters can contribute to the degradation of water quality. The objective of this study was to understand the fundamental processes limiting algal growth in highly nutrient-rich agricultural drainage water. Studies examining algal biokinetics (growth rates, yields, and decay) were conducted in a twenty-eight mile long, hydraulically simple, open channel. Algae biokinetics were found to follow a growth limited model, despite monitoring data demonstrating the presence of nutrients at concentrations far in excess of those expected to be limiting. A mechanistic algal biokinetic model was written to assist in data interpretation. Results from the mechanistic model suggested that at different times, soluble phosphate, minerals, and inorganic carbon could limit growth rates, but that growth yield was most likely limited by zooplankton grazing. The implication of these finding for control of algal growth are discussed.