Objectives
To examine the cognitive and neural effects of vision-based speed-of-processing (VSOP) training in older adults with amnestic mild cognitive impairment (aMCI) and contrast those effects with an active control (mental leisure activities (MLA)).Design
Randomized single-blind controlled pilot trial.Setting
Academic medical center.Participants
Individuals with aMCI (N = 21).Intervention
Six-week computerized VSOP training.Measurements
Multiple cognitive processing measures, instrumental activities of daily living (IADLs), and two resting state neural networks regulating cognitive processing: central executive network (CEN) and default mode network (DMN).Results
VSOP training led to significantly greater improvements in trained (processing speed and attention: F1,19 = 6.61, partial η(2) = 0.26, P = .02) and untrained (working memory: F1,19 = 7.33, partial η(2) = 0.28, P = .01; IADLs: F1,19 = 5.16, partial η(2) = 0.21, P = .03) cognitive domains than MLA and protective maintenance in DMN (F1, 9 = 14.63, partial η(2) = 0.62, P = .004). VSOP training, but not MLA, resulted in a significant improvement in CEN connectivity (Z = -2.37, P = .02).Conclusion
Target and transfer effects of VSOP training were identified, and links between VSOP training and two neural networks associated with aMCI were found. These findings highlight the potential of VSOP training to slow cognitive decline in individuals with aMCI. Further delineation of mechanisms underlying VSOP-induced plasticity is necessary to understand in which populations and under what conditions such training may be most effective.