Domoic acid (DA) is a neurotoxin produced during harmful algal blooms that accumulates in marine organisms that serve as food resources for humans. While acute DA neurotoxicity can cause seizures and hippocampal lesions, less is known regarding how chronic, subacute DA exposure in adulthood impacts the hippocampus. With more frequent occurrences of harmful algal blooms, it is important to understand the potential impact of repeated, low-level DA exposure on human health. To model repeated, low-dose DA exposure, adult mice received a single low-dose (0.75 ± 0.05 μg/g) of DA or vehicle weekly for 22 consecutive weeks. Quantitative immunohistochemistry was performed to assess the effects of repeated, low-level DA exposure on hippocampal cells and synapses. Vesicular glutamate transporter 1 (VGluT1) immunoreactivity within excitatory boutons in CA1 of DA-exposed mice was increased. Levels of other vesicular transporter proteins (i.e., VGluT2 and the vesicular GABA transporter (VGAT)) within boutons, and corresponding bouton densities, were not significantly altered in CA1, CA3, or dentate gyrus. There were no significant changes in neuron density or glial fibrillary acidic protein (GFAP) immunoreactivity following chronic, low-dose exposure. This suggests that repeated low doses of DA, unlike high doses of DA, do not cause neuronal loss or astrocyte activation in hippocampus in adult mice. Instead, these findings demonstrate that repeated exposure to low levels of DA leads to subtle changes in VGluT1 expression within CA1 excitatory boutons, which may alter glutamatergic transmission in CA1 and disrupt behaviors dependent on spatial memory.