Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Cruz

UC Santa Cruz Previously Published Works bannerUC Santa Cruz

UC Santa Cruz Previously Published Works

Cover page of Mistranslating the genetic code with leucine in yeast and mammalian cells

Mistranslating the genetic code with leucine in yeast and mammalian cells

(2024)

Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.

Deep Generative Models for Fast Photon Shower Simulation in ATLAS

(2024)

Abstract: The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques.

Software Performance of the ATLAS Track Reconstruction for LHC Run 3

(2024)

Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pile-up) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two.

Cover page of Clarifying Mendelian vs non-Mendelian inheritance.

Clarifying Mendelian vs non-Mendelian inheritance.

(2024)

Gregor Mendel developed the principles of segregation and independent assortment in the mid-1800s based on his detailed analysis of several traits in pea plants. Those principles, now called Mendels laws, in fact, explain the behavior of genes and alleles during meiosis and are now understood to underlie Mendelian inheritance of a wide range of traits and diseases across organisms. When asked to give examples of inheritance that do NOT follow Mendels laws, in other words, examples of non-Mendelian inheritance, students sometimes list incomplete dominance, codominance, multiple alleles, sex-linked traits, and multigene traits and cite as their sources the Khan Academy, Wikipedia, and other online sites. Against this background, the goals of this Perspective are to (1) explain to students, healthcare workers, and other stakeholders why the examples above, in fact, display Mendelian inheritance, as they obey Mendels laws of segregation and independent assortment, even though they do not produce classic Mendelian phenotypic ratios and (2) urge individuals with an intimate knowledge of genetic principles to monitor the accuracy of learning resources and work with us and those resources to correct information that is misleading.

Measurement of the Z boson invisible width at s = 13 TeV with the ATLAS detector

(2024)

A measurement of the invisible width of the Z boson using events with jets and missing transverse momentum is presented using 37 fb−1 of 13 TeV proton–proton data collected by the ATLAS detector in 2015 and 2016. The ratio of Z→inv to Z→ℓℓ events, where inv refers to non-detected particles and ℓ is either an electron or a muon, is measured and corrected for detector effects. Events with at least one energetic central jet with pT≥110 GeV are selected for both the Z→inv and Z→ℓℓ final states to obtain a similar phase space in the ratio. The invisible width is measured to be 506±2(stat.)±12(syst.) MeV and is the single most precise recoil-based measurement. The result is in agreement with the most precise determination from LEP and the Standard Model prediction based on three neutrino generations.

“Be Dog Have Fun”: Narratives of Discovery, Meaning, and Motivation among Members of the Pup Subculture

(2024)

Abstract: The twenty-first century has seen the proliferation of new sexual identity subcultures rooted in creative role-play dynamics, expanding our cultural and scientific understanding of diversity in sexuality and intimacy. In an international sample of 568 people who identified with the kink subculture of pup play, we analyzed responses to open-ended questions about the discovery of pup play and communities, definitions of pup play, and motivations for engagement. Four themes were identified: (1) social technologies as central to discovery of the subculture; (2) constructionist accounts of pup identity development emerging from relationships and exposure to other kink communities; (3) individual psychological benefits of subculture participation, including stress relief, relaxation, and pleasure; and (4) social psychological benefits in identity and community building. We situate these findings in relation to the expansion of diversity in sexual identity and intimacy in the twenty-first century, facilitated by the heightened visibility and opportunities for social and intimate creativity which have accompanied the growth of social media and exposure to new sexual stories.