Finding Bayesian optimal designs for nonlinear models is a difficult task because the optimality criteriontypically requires us to evaluate complex integrals before we perform a constrained optimization. Wepropose a hybridized method where we combine an adaptive multidimensional integration algorithm anda metaheuristic algorithm called imperialist competitive algorithm to find Bayesian optimal designs. Weapply our numerical method to a few challenging design problems to demonstrate its efficiency. Theyinclude finding D-optimal designs for an item response model commonly used in education, Bayesianoptimal designs for survivalmodels, and Bayesian optimal designs for a four-parameter sigmoid Emax doseresponse model. Supplementary materials for this article are available online and they contain an R packagefor implementing the proposed algorithm and codes for reproducing all the results in this paper.