In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck-Condon active vibrational modes in the resonant condition [Fujihashi et al., J. Chem. Phys. 2015, 142, 212403.]. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures. However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment electronic coupling. In this study, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer with an off-resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small. The electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics despite contributing to the enhancement of long-lived quantum beating in the 2D spectra.