- Lam, Tonika;
- Kulp, Dennis V;
- Wang, Rui;
- Lou, Zheng;
- Taylor, Julia;
- Rivera, Carlos E;
- Yan, Hui;
- Zhang, Qi;
- Wang, Zhonghua;
- Zan, Hong;
- Ivanov, Dmitri N;
- Zhong, Guangming;
- Casali, Paolo;
- Xu, Zhenming
IgG autoantibodies mediate pathology in systemic lupus patients and lupus-prone mice. In this study, we showed that the class-switched IgG autoantibody response in MRL/Faslpr/lpr and C57/Sle1Sle2Sle2 mice was blocked by the CID 1067700 compound, which specifically targeted Ras-related in brain 7 (Rab7), an endosome-localized small GTPase that was upregulated in activated human and mouse lupus B cells, leading to prevention of disease development and extension of lifespan. These were associated with decreased IgG-expressing B cells and plasma cells, but unchanged numbers and functions of myeloid cells and T cells. The Rab7 inhibitor suppressed T cell-dependent and T cell-independent Ab responses, but it did not affect T cell-mediated clearance of Chlamydia infection, consistent with a B cell-specific role of Rab7. Indeed, B cells and plasma cells were inherently sensitive to Rab7 gene knockout or Rab7 activity inhibition in class switching and survival, respectively, whereas proliferation/survival of B cells and generation of plasma cells were not affected. Impairment of NF-κB activation upon Rab7 inhibition, together with the rescue of B cell class switching and plasma cell survival by enforced NF-κB activation, indicated that Rab7 mediates these processes by promoting NF-κB activation, likely through signal transduction on intracellular membrane structures. Thus, a single Rab7-inhibiting small molecule can target two stages of B cell differentiation to dampen the pathogenic autoantibody response in lupus.