Few studies have examined threat generalization across development and no developmental studies have compared the generalization of social versus nonsocial threat, making it difficult to identify contextual factors that contribute to threat learning across development. The present study assessed youth and adults multivoxel neural representations of social versus nonsocial threat stimuli. Twenty adults (Mage = 25.7 ± 4.9) and 16 youth (Mage = 14.1 ± 1.7) completed two conditioning and extinction recall paradigms: one social and one nonsocial paradigm. Three weeks after conditioning, participants underwent a functional magnetic resonance imaging extinction recall task that presented the extinguished threat cue (CS+), a safety cue (CS-), and generalization stimuli (GS) consisting of CS-/CS+ blends. Across age groups, neural activity patterns and self-reported fear and memory ratings followed a linear generalization gradient for social threat stimuli and a quadratic generalization gradient for nonsocial threat stimuli, indicating enhanced threat/safety discrimination for social relative to nonsocial threat stimuli. The amygdala and ventromedial prefrontal cortex displayed the greatest neural pattern differentiation between the CS+ and GS/CS-, reinforcing their role in threat learning and extinction recall. Contrary to predictions, age did not influence threat representations. These findings highlight the importance of the social relevance of threat on generalization across development.