Microfluidic devices are gaining popularity in a variety of applications, ranging from molecular biology to bio-defense. However, the widespread adoption of this technology is constrained by the lack of efficient and cost-effective manufacturing processes. This paper focuses on the roller imprinting process, which is being developed to rapidly and inexpensively fabricate micro-fluidic devices. In this process, a cylindrical roll with raised features on its surface creates imprints by rolling over a fixed workpiece substrate and mechanically deforming it. Roller imprinting aims to replace processes that were developed for laboratory scale prototyping which tend to not be scalable and have high equipment requirements and overheads. We discuss the limitations of PDMS soft lithography in large-scale manufacture of microfluidic devices. We also discuss the design, fabrication, and testing of a simple roller imprinting device. This imprinter has been developed based on the principles of precision machine design and is implemented using a three-axis machine tool for actuation and position measurement. A framework for the micromachining of precision imprint rolls is also presented.
A life-cycle energy consumption analysis of a Bridgeport manual mill and a Mori Seiki DuraVertical 5060 has been conducted. The use phase incorporated three manufacturing environments: a community shop, a job shop, and a commercial facility. The CO2-equivalent emissions were presented per machined part. While the use phase comprised the majority of the overall emissions, the manufacturing phase emissions were significant especially for the job shop, which is not as efficient as the other facilities due to its inherent need for flexibility. Since the Mori Seiki is heavier, the manufacturing phase of this machine tool had a greater impact on emissions than the Bridgeport. Transportation was small relative to the use phase, which was dominated by cutting, HVAC, and lighting. These results highlight areas for energy reductions in machine tool design as well as the importance of facility type to the manufacture of any product.
Strategies to reduce energy demand in manufacturing processes are becoming necessary due to the growing concern of carbon emissions and the expected rise of electricity prices over time. To guide the development of these strategies, the results of a life-cycle energy consumption analysis of milling machine tools are first highlighted to show the effect of several factors such as degree of automation, manufacturing environment, transportation, material inputs, and facility inputs on environmental impact. An overview of design and operation strategies to reduce energy consumption is thereafter presented including the implementation of a Kinetic Energy Recovery System (KERS), a process parameter selection strategy, and a web-based energy estimation tool.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.