The ability to discriminate between large and small quantities is a core aspect of basic numerical competence in both humans and animals. In this work, we examine the extent to which the state-of-the-art neural networks designed for vision exhibit this basic ability. Motivated by studies in animal and infant numerical cognition, we use the numerical bisection procedure to test number discrimination in different families of neural architectures.
Our results suggest that vision-specific inductive biases are helpful in numerosity discrimination, as models with such biases have lowest test errors on the task, and often have psychometric curves that qualitatively resemble those of humans and animals performing the task.
However, even the strongest models, as measured on standard metrics of performance, fail to discriminate quantities in transfer experiments with differing training and testing conditions, indicating that such inductive biases might not be sufficient.