PURPOSE: Bioactive molecules critical to intracellular signaling are contained in extracellular vesicles (EVs) and have cardioprotective effects in ischemia/reperfusion (IR) injured hearts. This study investigated the mechanism of the cardioprotective effects of EVs derived from hypoxia-preconditioned human mesenchymal stem cells (MSCs). MATERIALS AND METHODS: EV solutions (0.4 μg/μL) derived from normoxia-preconditioned MSCs (EV(NM)) and hypoxia-preconditioned MSCs (EV(HM)) were delivered in a rat IR injury model. Successful EV delivery was confirmed by the detection of PKH26 staining in hearts from EV-treated rats. RESULTS: EV(HM) significantly reduced infarct size (24±2% vs. 8±1%, p<0.001), and diminished arrhythmias by recovering electrical conduction, I(Na) current, and Cx43 expression. EV(HM) also reversed reductions in Wnt1 and β-catenin levels and increases in GSK3β induced after IR injury. miRNA-26a was significantly increased in EV(HM), compared with EV(NM), in real-time PCR. Finally, in in vitro experiments, hypoxia-induced increases in GSK3β expression were significantly reduced by the overexpression of miRNA-26a. CONCLUSION: EV(HM) reduced IR injury by suppressing GSK3β expression via miRNA-26a and increased Cx43 expression. These findings suggest that the beneficial effect of EVHM is related with Wnt signaling pathway.