We are now on a clear trajectory for improvements in exoplanet observations
that will revolutionize our ability to characterize their atmospheric
structure, composition, and circulation, from gas giants to rocky planets.
However, exoplanet atmospheric models capable of interpreting the upcoming
observations are often limited by insufficiencies in the laboratory and
theoretical data that serve as critical inputs to atmospheric physical and
chemical tools. Here we provide an up-to-date and condensed description of
areas where laboratory and/or ab initio investigations could fill critical gaps
in our ability to model exoplanet atmospheric opacities, clouds, and chemistry,
building off a larger 2016 white paper, and endorsed by the NAS Exoplanet
Science Strategy report. Now is the ideal time for progress in these areas, but
this progress requires better access to, understanding of, and training in the
production of spectroscopic data as well as a better insight into chemical
reaction kinetics both thermal and radiation-induced at a broad range of
temperatures. Given that most published efforts have emphasized relatively
Earth-like conditions, we can expect significant and enlightening discoveries
as emphasis moves to the exotic atmospheres of exoplanets.