- Gatanaga, T;
- Hwang, CD;
- Kohr, W;
- Cappuccini, F;
- Lucci, JA;
- Jeffes, EW;
- Lentz, R;
- Tomich, J;
- Yamamoto, RS;
- Granger, GA
Serum ultrafiltrates (SUF) from human patients with different types of cancer contain a blocking factor (BF) that inhibits the cytolytic activity of human tumor necrosis factor alpha (TNF-alpha) in vitro. BF is a protein with a molecular mass of 28 kDa on reducing sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE). The active material was purified to homogeneity by a combination of affinity chromatography, PAGE, and high-pressure liquid chromatography. Amino acid sequence analysis revealed that BF is derived from the membrane TNF receptor. Purified BF blocks the lytic activity of recombinant human and mouse TNF-alpha and recombinant human lymphotoxin on murine L929 cells in vitro. However, BF inhibits the lytic activity of TNF-alpha more effectively than it does that of lymphotoxin. The BF also inhibits the necrotizing activity of recombinant human TNF-alpha when coinjected into established cutaneous Meth A tumors in BALB/c mice. The BF may have an important role in (i) the regulation and control of TNF-alpha and lymphotoxin activity in cancer patients, (ii) interaction between the tumor and the host antitumor mechanisms, and (iii) use of systemically administered TNF-alpha in clinical trials with human cancer patients.