- Lakey, Pascale SJ;
- Berkemeier, Thomas;
- Krapf, Manuel;
- Dommen, Josef;
- Steimer, Sarah S;
- Whalley, Lisa K;
- Ingham, Trevor;
- Baeza-Romero, Maria T;
- Pöschl, Ulrich;
- Shiraiwa, Manabu;
- Ammann, Markus;
- Heard, Dwayne E
We report the first measurements of HO2 uptake coefficients, γ, for secondary organic aerosol (SOA) particles and for the well-studied model compound sucrose which we doped with copper(II). Above 65% relative humidity (RH), γ for copper(II)-doped sucrose aerosol particles equalled the surface mass accommodation coefficient α = 0.22±0.06, but it decreased to γ = 0.012±0.007 upon decreasing the RH to 17 %. The trend of γ with RH can be explained by an increase in aerosol viscosity and the contribution of a surface reaction, as demonstrated using the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). At high RH the total uptake was driven by reaction in the near-surface bulk and limited by mass accommodation, whilst at low RH it was limited by surface reaction. SOA from two different precursors, α-pinene and 1,3,5-trimethylbenzene (TMB), was investigated, yielding low uptake coefficients of γ < 0.001 and γ = 0.004±0.002, respectively. It is postulated that the larger values measured for TMB-derived SOA compared to α-pinene-derived SOA are either due to differing viscosity, a different liquid water content of the aerosol particles, or an HO2 + RO2 reaction occurring within the aerosol particles.