To test the hypothesis that children store less CO2 than adults during exercise, we measured breath 13CO2 washout dynamics after oral bolus of [13C]bicarbonate in nine children [8 +/- 1 (SD) yr, 4 boys] and nine (28 +/- 6 yr, 5 males) adults. Gas exchange [O2 uptake and CO2 production (Vco2)] was measured breath by breath during rest and during light (80% of the anaerobic threshold) intermittent exercise. Breath samples were obtained for subsequent analysis of 13CO2 by isotope ratio mass spectrometry. The tracer estimate of Vco2 was highly correlated to Vco2 measured by gas exchange (r = 0.97, P < 0.0001). The mean residence time was shorter in children (50 +/- 5 min) compared with adults (69 +/- 7 min, P < 0.0001) at rest and during exercise (children, 35 +/- 7 min; adults, 50 +/- 11 min, P < 0.001). The estimate of stored CO2 (using mean Vco2 measured by gas exchange and mean residence time derived from tracer washout) was not statistically different at rest between children (254 +/- 36 ml/kg) and adults (232 +/- 37 ml/kg). During exercise, CO2 stores in the adults (304 +/- 46 ml/kg) were significantly increased over rest (P < 0.001), but there was no increase in children (mean exercise value, 254 +/- 38 ml/kg). These data support the hypothesis that CO2 distribution in response to exercise changes during the growth period.