Brain arteriovenous malformations (BAVMs) are a potentially life-threatening disorder. Matrix metalloproteinase (MMP)-9 activity was greatly increased in BAVM tissue specimens. Doxycycline was shown to decrease cerebral MMP-9 activities and angiogenesis induced by vascular endothelial growth factor ( VEGF). In the present study, we determined the dose-response effects of doxycycline and minocycline on cerebral MMP-9 using our mouse model with VEGF focal hyperstimulation delivered with adenoviral vector (AdVEGF) in the brain. Mice were treated with doxycycline or minocycline, respectively, at 1, 5, 10, 30, 50, or 100 mg/kg/day through drinking water for 1 week. Our results have shown that MMP-9 messenger ribonucleic acid (mRNA) expression was inhibited by doxycycline starting at 10 mg/kg/day (P < 0.02). Minocycline showed more potent inhibition on MMP-9 mRNA expression, starting at 1 (P < 0.005) and further at more than 30 (P < 0.001) mg/kg/day. At the enzymatic activity level, doxycycline started to suppress MMP-9 activity at 5 mg/kg/day (P < 0.001), while minocycline had an effect at a lower dose, 1mg/kg/day (P < 0.02). The inhibition of cerebral MMP-9 mRNA and activity were highly correlated with drug levels in the brain tissue. We also assessed the potential relevant signaling pathway in vitro to elucidate the mechanisms underlying the MMP-9 inhibition by tetracyclines. In vitro, minocycline, but not doxycycline, inhibits MMP- 9, at least in part, via the extracellular signaling-related kinase 1/2 (ERK1/2)-mediated pathway. This study provided the evidence that the tetracyclines inhibit stimulated cerebral MMP- 9 at multiple levels and are effective at very low doses, offering great potential for therapeutic use.
Background: Prion diseases are caused by the accumulation of an aberrantly folded isoform of the prion protein, designated PrPSc. In a cell-based assay, quinacrine inhibits the conversion of normal host prion protein (PrPC) to PrPSc at a half-maximal concentration of 300 nM. While these data suggest that quinacrine may be beneficial in the treatment of prion disease, its penetration into brain tissue has not been extensively studied. If quinacrine penetrates brain tissue in concentrations exceeding that demonstrated for in vitro inhibition of PrPSc, it may be useful in the treatment of prion disease. Methods: Oral quinacrine at doses of 37.5 mg/kg/D and 75 mg/kg/D was administered to mice for 4 consecutive weeks. Plasma and tissue ( brain, liver, spleen) samples were taken over 8 weeks: 4 weeks with treatment, and 4 weeks after treatment ended. Results: Quinacrine was demonstrated to penetrate rapidly into brain tissue, achieving concentrations up to 1500 ng/g, which is several-fold greater than that demonstrated to inhibit formation of PrPSc in cell culture. Particularly extensive distribution was observed in spleen (maximum of 100 mug/g) and liver (maximum of 400 mug/g) tissue. Conclusions: The documented extensive brain tissue penetration is encouraging suggesting quinacrine might be useful in the treatment of prion disease. However, further clarification of the distribution of both intracellular and extracellular unbound quinacrine is needed. The relative importance of free quinacrine in these compartments upon the conversion of normal host prion protein (PrPC) to PrPSc will be critical toward its potential benefit.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.