Identifying optimal designs for generalized linear models with a binary response can be a challengingtask, especially when there are both discrete and continuous independent factors in the model. Theoreticalresults rarely exist for such models, and for the handful that do, they usually come with restrictive assumptions.In this article, we propose the d-QPSO algorithm, a modified version of quantum-behaved particleswarm optimization, to find a variety of D-optimal approximate and exact designs for experiments withdiscrete and continuous factors and a binary response. We show that the d-QPSO algorithm can efficientlyfind locally D-optimal designs even for experiments with a large number of factors and robust pseudo-Bayesian designs when nominal values for the model parameters are not available. Additionally, we investigaterobustness properties of the d-QPSO algorithm-generated designs to variousmodel assumptions andprovide real applications to design a bio-plastics odor removal experiment, an electronic static experiment,and a 10-factor car refueling experiment. Supplementary materials for the article are available online.