The shoot apical meristem (SAM) is a dome-shaped collection of cells at the
apex of growing plants from which all above-ground tissue ultimately derives.
In Arabidopsis thaliana (thale cress), a small flowering weed of the
Brassicaceae family (related to mustard and cabbage), the SAM typically
contains some three to five hundred cells that range from five to ten microns
in diameter. These cells are organized into several distinct zones that
maintain their topological and functional relationships throughout the life of
the plant. As the plant grows, organs (primordia) form on its surface flanks in
a phyllotactic pattern that develop into new shoots, leaves, and flowers.
Cross-sections through the meristem reveal a pattern of polygonal tessellation
that is suggestive of Voronoi diagrams derived from the centroids of cellular
nuclei. In this chapter we explore some of the properties of these patterns
within the meristem and explore the applicability of simple, standard
mathematical models of their geometry.