Introduction: Quantitative measurements of T-2 relaxation in the hippocampus for focus lateralization in mesial temporal lobe epilepsy (mTLE) are well established. Less is known to what degree such relaxation abnormalities also affect regions beyond the ipsilateral hippocampus. Therefore, the aim of this study was to characterize extent and distribution pattern of extrahippocampal relaxation abnormalities in TLE with (TLE-MTS) and without MRI evidence of mesial-temporal sclerosis (TLE-no). Methods: Double spin echo images (TE1/2: 20/80 ms) acquired in 24 TLE-MTS and 18 TLE-no were used to calculate relaxation rate maps. These maps were analyzed by SPM2 and by selecting regions of interest (ROI) in the hippocampus and several extrahippocampal brain regions. Results: In TLE-MTS, the results of the SPM and ROI analysis were in good agreement and showed the most severe relaxation rate decreases in the ipsilateral hippocampus but also in other ipsilateral temporal regions, orbitofrontal, and parietal regions and to a lesser degree in contralateral frontal regions. The relaxation rate decreases in TLE-no were confined to small regions in the ipsilateral anterior inferior and medial temporal lobe in the SPM analysis while ROI analysis showed additional regions in the ipsilateral hippocampus, amygdala, and anterior cingulate. Conclusion: TLE-MTS showed extensive, widespread but predominantly ipsilateral temporal and also extratemporal T-2 relaxation rate decreases. In contrast, the findings of the SPM and ROI analyses in TLE-no suggested that if relaxation rate decreases are present, they are less uniform and generally milder than in TLE-MTS. This further supports the hypothesis that TLE-no is a distinct clinicopathological entity from TLE-MTS and probably heterogeneous in itself.
Lesional neocortical epilepsy (NE) can be associated with hippocampal sclerosis or hippocampal spectroscopic abnormalities without atrophy (dual pathology). In this study, magnetic resonance spectroscopic imaging (MRSI) was used to determine the frequency of hippocampal damage/dysfunction in NE with and without structural lesion. Sixteen patients with NE [seven temporal NE (NE-T), nine extratemporal (NEET)] and 16 controls were studied with a 2D MRSI sequence (Repetition time/echo time (TR/TE) = 1800/135 ms) covering both hippocampi. Seven NE patients had MR visible lesions (NE-Les), nine had normal MRI (NE-no). In each hippocampus, 12 voxels were uniformly selected. In controls, mean (SD) NAA/(Cr + Cho) values for each voxel were calculated and voxels with NAA/(Cr + Cho) <= (mean in controls - 2SD in controls) were defined as 'pathological' in patients. Eight of 16 NE patients had at least two 'pathological' voxel (mean 2.5, range 2-5) in one hippocampus. Four were NE-Les and four NE-no. Three (43%) NE-T patients, had evidence for hippocampal damage/dysfunction and five (56%) had NE-ET. The ipsilateral hippocampus was affected in six of eight NE patients. Evidence for unilateral hippocampal damage/dysfunction was demonstrated in 50% of the NE patients. The type of NE, i.e. NE-Les or NE-no, NE-T or NE-ET, had no influence on the occurrence of hippocampal damage/dysfunction.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.