We compare and contrast data collected in 2012 and 2014 from the El Tatio geyser field, Chile. We identify geyser systems that evolve over time, including changes in the interval between eruptions, development of new thermal features, and interactions between geysers. We study three different cases: (a) an isolated geyser, which is periodic and has nearly identical eruptions every cycle; (b) a geyser and coupled noneruptive pool, where the geyser has nonregular cycles and several preplay eruptions before the main eruption; and (c) two geysers and a mud volcano, which have nonregular cycles and are all interacting. Though geysers erupt with different styles, we recognize some common features: the conduit recharges with liquid during the quiescent period, bubbles enter the conduit before eruptions, and eruptions occur when water boils in the upper part of the conduit. The episodic addition of heat may govern the periodicity, while the depth where heat is added dictates the eruption style: conduits with deeper heat input are more likely to show preplay or minor eruptions. The interactions between thermal features can be explained by pressure transmission in subsurface permeable layers between geyser conduits. Key Points Geysers can be hydraulically connected through permeable pathways to other hot springs The level of complexity of geyser eruptions may be controlled by the underground geometry Over time geysers change periodicity, develop new thermal features, and shift interactions