- Lockwood, Glenn K;
- Yoo, Wucherl;
- Byna, Suren;
- Wright, Nicholas J;
- Snyder, Shane;
- Harms, Kevin;
- Nault, Zachary;
- Carns, Philip
- Editor(s): Mohror, Kathryn;
- Welch, Brent
I/O efficiency is essential to productivity in scientific computing, especially as many scientific domains become more data-intensive. Many characterization tools have been used to elucidate specific aspects of parallel I/O performance, but analyzing components of complex I/O subsystems in isolation fails to provide insight into critical questions: how do the I/O components interact, what are reasonable expectations for application performance, and what are the underlying causes of I/O performance problems? To address these questions while capitalizing on existing component-level characterization tools, we propose an approach that combines on-demand, modular synthesis of I/O characterization data into a unified monitoring and metrics interface (UMAMI) to provide a normalized, holistic view of I/O behavior. We evaluate the feasibility of this approach by applying it to a month-long benchmarking study on two distinct largescale computing platforms. We present three case studies that highlight the importance of analyzing application I/O performance in context with both contemporaneous and historical component metrics, and we provide new insights into the factors affecting I/O performance. By demonstrating the generality of our approach, we lay the groundwork for a production-grade framework for holistic I/O analysis.