Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.
Staging Laser Plasma Accelerators (LPAs) is necessary in order to reach beam energies of 100 GeV and above. This requires incoupling of additional laser beams into accelerating stages. In order to maintain the high average accelerating gradient of a staged LPA, it is imperative to minimize the distance that is needed for laser incoupling. A plasma mirror is proposed as the final coupling optic reducing the coupling distance from tens of meters, using a conventional optic, to as small as a few cm. Both a planar water jet and a nitrocellulose foil are used as reflecting surfacesand characterized. A maximum reflectivity of 70percent was obtained using both surfaces.
A GeV-class laser-driven plasma-based wakefield accelerator has been realized at the Lawrence Berkeley National Laboratory (LBNL). The device consists of the 40TW high repetition rate Ti:sapphire LOASIS laser system at LBNL and a gas-filled capillary discharge waveguide developed at Oxford University. The operation of the capillary discharge guided laser plasma wakefield accelerator with a capillaryof 225 mu m diameter and 33 mm in length was analyzed in detail. The input intensity dependence suggests that excessive self-injection causes increased beam loading leading to broadband lower energy electron beam generation. The trigger versus laser arrival timing dependence suggests that the plasma channel parameters can be tuned to reduce beam divergence.
An optical injection scheme for a laser-plasma based accelerator which employs a non-collinear counter-propagating laser beam to push background electrons in the focusing and acceleration phase via ponderomotive beat with the trailing part of the wakefield driver pulse is discussed. Preliminary experiments were performed using a drive beam of a_0 = 2.6 and colliding beam of a_1 = 0.8 both focused on the middle of a 200 mu m slit jet backed with 20 bar, which provided ~; 260 mu m long gas plume. The enhancement in the total charge by the colliding pulse was observed with sharp dependence on the delay time of the colliding beam. Enhancement of the neutron yield was also measured, which suggests a generation of electrons above 10 MeV.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.