Significance
An unmet need is recognized for early detection and diagnosis of neurological diseases. Many psychological markers emerge years after disease onset. Mitochondrial dysfunction and corresponding neurodegeneration occur before onset of large-scale cell and tissue pathology. Early detection of subcellular morphology changes could serve as a beacon for early detection of neurological diseases. This study is on bacterial colonies, Bacillus subtilis, which are similar in size to mitochondria.Aim
This study investigates whether morphological changes can be detected in Bacillus subtilis using scattering angle resolved optical coherence tomography (SAR-OCT).Approach
The SAR-OCT was applied to detect scattering angle distribution changes in Bacillus subtilis. The rod-to-coccus shape transition of the bacteria was imaged, and the backscattering angle was analyzed by recording the distribution of the ratio of low- to medium angle scattering (L/M ratio). Bacillus orientation at different locations in colonies was analytically modeled and compared with SAR-OCT results.Results
Significant differences in the distribution of backscattering angle were observed in Bacillus subtilis transitioning from rod-to-coccus shapes. In Bacillus subtilis, the C -parameter of the Burr distribution of the SAR-OCT-derived L/M ratio was significantly smaller in coccus compared with rod-shaped bacteria. SAR-OCT-derived L/M ratio varied with bacterial position in the colony and is consistent with predicted orientations from previous studies.Conclusions
Study results support the potential of utilizing SAR-OCT to detect bacterial morphological changes.