Transcriptional activation of eukaryotic genes is accompanied, in general, by a change in the sensitivity of promoter chromatin to endonucleases. The structural basis of this alteration has remained elusive for decades; but the change has been viewed as a transformation of one structure into another, from "closed" to "open" chromatin. In contradistinction to this static and deterministic view of the problem, a dynamical and probabilistic theory of promoter chromatin has emerged as its solution. This theory, which we review here, explains observed variation in promoter chromatin structure at the level of single gene molecules and provides a molecular basis for random bursting in transcription-the conjecture that promoters stochastically transition between transcriptionally conducive and inconducive states. The mechanism of transcriptional regulation may be understood only in probabilistic terms.