BACKGROUND: Bloodborne pathogens pose a major safety risk in transfusion medicine. To mitigate the risk of bacterial contamination in platelet units, FDA issues updated guidance materials on various bacterial risk control strategies (BRCS). This analysis presents results of a budget impact model updated to include 5- and 7-day pathogen reduced (PR) and large volumed delayed sampling (LVDS) BRCS. STUDY DESIGN AND METHODS: Model base-case parameter inputs were based on scientific literature, a survey distributed to 27 US hospitals, and transfusion experts opinion. The outputs include hospital budget and shelf-life impacts for 5- and 7-day LVDS, and 5- and 7-day PR units under three different scenarios: (1) 100% LVDS, (2) 100% PR, and (3) mix of 50% LVDS - and 50% PR. RESULTS: Total annual costs from the hospital perspective were highest for 100% LVDS platelets (US$2.325M) and lowest for 100% PR-7 units (US$2.170M). Net budget impact after offsetting annual costs by outpatient reimbursements was 5.5% lower for 5-day PR platelets as compared to 5-day LVDS (US$1.663 vs. US$1.760M). A mix of 7-day LVDS and 5-day PR platelets had net annual costs that were 1.3% lower than for 100% 7-day LVDS, but 1.3% higher than for 100% 5-day PR. 7-day PR platelets had the longest shelf life (4.63 days), while 5-day LVDS had the shortest (2.00 days). DISCUSSION: The model identifies opportunities to minimize transfusion center costs for 5- and 7-day platelets. Budget impact models such as this are important for understanding the financial implications of evolving FDA guidance and new platelet technologies.