Unlike many complex networks studied in the literature, social networks
rarely exhibit unanimous behavior, or consensus. This requires a development of
mathematical models that are sufficiently simple to be examined and capture, at
the same time, the complex behavior of real social groups, where opinions and
actions related to them may form clusters of different size. One such model,
proposed by Friedkin and Johnsen, extends the idea of conventional consensus
algorithm (also referred to as the iterative opinion pooling) to take into
account the actors' prejudices, caused by some exogenous factors and leading to
disagreement in the final opinions.
In this paper, we offer a novel multidimensional extension, describing the
evolution of the agents' opinions on several topics. Unlike the existing
models, these topics are interdependent, and hence the opinions being formed on
these topics are also mutually dependent. We rigorous examine stability
properties of the proposed model, in particular, convergence of the agents'
opinions. Although our model assumes synchronous communication among the
agents, we show that the same final opinions may be reached "on average" via
asynchronous gossip-based protocols.