We show that the enhanced directivity phenomenon for light passing through a subwavelength aperture in a silver film with corrugations on the exit face, is due to a leaky wave that decays exponentially from the aperture. We show quantitatively that the field along the interface of the silver film is dominated by the leaky wave, and that the radiation of the leaky wave, supported by the periodic structure, yields the directive beam. The leaky wave propagation and attenuation constants parameterize the physical radiation mechanism, and provide important design information for optimizing the structure. Maximum directivity occurs when the phase and attenuation constants are approximately equal (c) 2008 Optical Society of America