Introduction
Brain metastases are a significant source of morbidity and mortality for patients with lung cancer. Lung cancer can induce local and systemic immunosuppression, promoting tumor growth and dissemination. One mechanism of immunosuppression is tumor-induced expansion of programmed death-ligand 1 (PD-L1) expressing myeloid cells. Here, we investigate peripheral blood immune phenotype in NSCLC patients with or without brain metastasis.Methods
Peripheral blood was collected from patients with lung metastatic brain tumors and pre-metastatic lung cancer. Immunosuppressive monocytes, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs) were quantified through flow cytometry. T cell reactivity was analyzed via ELISpot. Brain metastasis conditioned media was collected from tumor-derived cell cultures and analyzed for cytokines by ELISA. Naïve monocytes were stimulated with brain metastasis conditioned media to evaluate PD-L1 stimulation.Results
Patients with brain metastatic lung carcinoma demonstrated increased peripheral monocyte PD-L1, MDSC abundance, and Treg percentage compared to early stage pre-metastatic patients and healthy controls. Patients with elevated peripheral monocyte PD-L1 had less reactive T cells and worse survival. Brain metastasis conditioned media stimulation increased monocyte PD-L1, and conditioned media IL-6 levels correlated with PD-L1 induction. Treatment with anti-IL-6 or anti-IL-6 receptor antibodies reduced PD-L1 expression. In summary, patients with lung cancer and brain metastases exhibit multiple markers of peripheral immunosuppression.Conclusions
The frequency of PD-L1+ myeloid cells correlated with the presence of brain metastases. Tumor-derived IL-6 was capable of inducing PD-L1+ myeloid cells in vitro, suggesting that monitoring of immunosuppressive factors in peripheral blood may identify new targets for therapeutic intervention in selected patients.