- Basu, Anirban;
- Schilling, Kathrin;
- Brown, Shaun T;
- Johnson, Thomas M;
- Christensen, John N;
- Hartmann, Matt;
- Reimus, Paul W;
- Heikoop, Jeffrey M;
- Woldegabriel, Giday;
- DePaolo, Donald J
One of the major ecological concerns associated with the in situ recovery (ISR) of uranium (U) is the environmental release of soluble, toxic selenium (Se) oxyanions generated by mining. Post-mining natural attenuation by the residual reductants in the ore body and reduced down-gradient sediments should mitigate the risk of Se contamination in groundwater. In this work, we investigate the Se concentrations and Se isotope systematics of groundwater and of U ore bearing sediments from an ISR site at Rosita, TX, USA. Our results show that selenate (Se(VI)) is the dominant Se species in Rosita groundwater, and while several up-gradient wells have elevated Se(VI), the majority of the ore zone and down-gradient wells have little or no Se oxyanions. In addition, the δ82SeVI of Rosita groundwater is generally elevated relative to the U ore up to +6.14‰, with the most enriched values observed in the ore-zone wells. Increasing δ82Se with decreasing Se(VI) conforms to a Rayleigh type distillation model with an ε of -2.25‰ ± 0.61‰, suggesting natural Se(VI) reduction occurring along the hydraulic gradient at the Rosita ISR site. Furthermore, our results show that Se isotopes are excellent sensors for detecting and monitoring post-mining natural attenuation of Se oxyanions at ISR sites.