We used narrowband interference filters with the CCD imaging camera on the
Nickel 1.0 meter telescope at Lick Observatory to observe 31 nearby (z < 0.03)
Seyfert galaxies in the 12 {\mu}m Active Galaxy Sample. We obtained pure
emission line images of each galaxy in order to separate H{\alpha} emission
from the nucleus from that of the host galaxy. The extended H{\alpha} emission
is expected to be powered by newly formed hot stars, and correlates well with
other indicators of current star formation in these galaxies: 7.7 {\mu}m PAH,
far-infrared, and radio luminosity. Relative to what would be expected from
recent star formation, there is a 0.8 dex excess of radio emission in our
Seyfert galaxies. The nuclear H{\alpha} luminosity is dominated by the AGN, and
is correlated with the hard X-ray luminosity. There is an upward offset of 1
dex in this correlation for the Seyfert 1s due to a strong contribution from
the Broad Line Region. We found a correlation between star formation rate and
AGN luminosity. In spite of selection effects, we concluded that the absence of
bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly
significant. We used our measured spatial distributions of H{\alpha} emission
to determine what these Seyfert galaxies would look like when observed through
fixed apertures at high redshifts. Although all would be detectable emission
line galaxies at any redshift, most would appear dominated by HII region
emission. Only the most luminous AGN would still be identified at z~0.3.