A cloud of ultracold atoms trapped within the confines of a high-finesse optical cavity shakes from the pressure of the light that probes it. This form of measurement backaction, a central component of quantum measurement theory, is the subject of this dissertation. Enlisting the collective motion of ultracold atoms as the mechanical degree of freedom in a cavity optomechanical system, we reach settings cold and quiet enough to allow for the effects of measurement backaction to manifest. We report predictions for and experimental observa- tions of the Standard Quantum Limit for force sensitivity, optical ponderomotive squeezing, and the possibility of complex squeezing through generalized optical correlations.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.