We present a new algorithm for discovering patterns in time series and other
sequential data. We exhibit a reliable procedure for building the minimal set
of hidden, Markovian states that is statistically capable of producing the
behavior exhibited in the data -- the underlying process's causal states.
Unlike conventional methods for fitting hidden Markov models (HMMs) to data,
our algorithm makes no assumptions about the process's causal architecture (the
number of hidden states and their transition structure), but rather infers it
from the data. It starts with assumptions of minimal structure and introduces
complexity only when the data demand it. Moreover, the causal states it infers
have important predictive optimality properties that conventional HMM states
lack. We introduce the algorithm, review the theory behind it, prove its
asymptotic reliability, use large deviation theory to estimate its rate of
convergence, and compare it to other algorithms which also construct HMMs from
data. We also illustrate its behavior on an example process, and report
selected numerical results from an implementation.