This paper presents a parameter estimation approach based on hydrograph descriptors that capture dominant streamflow characteristics at three timescales (monthly, yearly, and record extent). The scheme, entitled hydrograph descriptors multitemporal sensitivity analyses (HYDMUS), yields an ensemble of model simulations generated from a reduced parameter space, based on a set of streamflow descriptors that emphasize the timescale dynamics of streamflow record. In this procedure the posterior distributions of model parameters derived at coarser timescales are used to sample model parameters for the next finer timescale. The procedure was used to estimate the parameters of the Sacramento soil moisture accounting model (SAC-SMA) for the Leaf River, Mississippi. The results indicated that in addition to a significant reduction in the range of parameter uncertainty, HYDMUS improved parameter identifiability for all 13 of the model parameters. The performance of the procedure was compared to four previous calibration studies on the same watershed. Although our application of HYDMUS did not explicitly consider the error at each simulation time step during the calibration process, the model performance was, in some important respects, found to be better than in previous deterministic studies. Copyright 2005 by the American Geophysical Union.