The construction of causal graphs from non-experimental data rests on a set of constraints that the graph structure imposes on all probability distributions compatible with the graph. These constraints are of two types: conditional independencies and algebraic constraints, first noted by Verma. While conditional independencies are well studied and frequently used in causal induction algorithms, Verma constraints are still poorly understood, and rarely applied. In this paper we examine a special subset of Verma constraints which are easy to understand, easy to identify and easy to apply; they arise from “dormant independencies,” namely, conditional independencies that hold in interventional distributions. We give a complete algorithm for determining if a dormant independence between two sets of variables is entailed by the causal graph, such that this independence is identifiable, in other words if it resides in an interventional distribution that can be predicted without resorting to interventions. We further show the usefulness of dormant independencies in model testing and induction by giving an algorithm that uses constraints entailed by dormant independencies to prune extraneous edges from a given causal graph.

## Type of Work

Article (7) Book (0) Theses (0) Multimedia (0)

## Peer Review

Peer-reviewed only (7)

## Supplemental Material

Video (0) Audio (0) Images (0) Zip (0) Other files (0)

## Publication Year

## Campus

UC Berkeley (0) UC Davis (0) UC Irvine (0) UCLA (7) UC Merced (0) UC Riverside (0) UC San Diego (0) UCSF (0) UC Santa Barbara (0) UC Santa Cruz (0) UC Office of the President (0) Lawrence Berkeley National Laboratory (0) UC Agriculture & Natural Resources (0)

## Department

Department of Statistics, UCLA (7)

## Journal

## Discipline

Arts and Humanities (7) Life Sciences (7) Physical Sciences and Mathematics (7) Social and Behavioral Sciences (7)

## Reuse License

## Scholarly Works (7 results)

We consider a hierarchy of queries about causal relationships in graphical models, where each level in the hierarchy requires more detailed information than the one below. The hierarchy consists of three levels: associative relationships, derived from a joint distribution over the observable variables; cause-effect relationships, derived from distributions resulting from external interventions; and counterfactuals, derived from distributions that span multiple “parallel worlds” and resulting from simultaneous, possibly conflicting observations and interventions. We completely characterize cases where a given causal query can be computed from information lower in the hierarchy, and provide algorithms that accomplish this computation. Specifically, we show when effects of interventions can be computed from observational studies, and when probabilities of counterfactuals can be computed from experimental studies. We also provide a graphical characterization of those queries which cannot be computed (by any method) from queries at a lower layer of the hierarchy.

This paper is concerned with estimating the effects of actions from causal assumptions, represented concisely as a directed graph, and statistical knowledge, given as a probability distribution. We provide a necessary and sufficient graphical condition for the cases when the causal effect of an arbitrary set of variables on another arbitrary set can be determined uniquely from the available information, as well as an algorithm which computes the effect whenever this condition holds. Furthermore, we use our results to prove completeness of do-calculus [Pearl, 1995], and a version of an identification algorithm in [Tian, 2002] for the same identification problem.

Many applications of causal analysis call for assessing, retrospectively, the effect of withholding an action that has in fact been implemented. This counterfactual quantity, sometimes called “effect of treatment on the treated,” (ETT) have been used to to evaluate educational programs, critic public policies, and justify individual decision making. In this paper we explore the conditions under which ETT can be estimated from (i.e., identified in) experimental and/or observational studies. We show that, when the action invokes a singleton variable, the conditions for ETT identification have simple characterizations in terms of causal diagrams. We further give a graphical characterization of the conditions under which the effects of multiple treatments on the treated can be identified, as well as ways in which the ETT estimand can be constructed from both interventional and observational distributions.

The subject of this paper is the elucidation of effects of actions from causal assumptions represented as a directed graph, and statistical knowledge given as a probability distribution. In particular, we are interested in predicting distributions on post-action outcomes given a set of measurements. We provide a necessary and sufficient graphical condition for the cases where such distributions can be uniquely computed from the available information, as well as an algorithm which performs this computation whenever the condition holds. Furthermore, we use our results to prove completeness of do-calculus [Pearl, 1995] for the same identification problem, and show applications to sequential decision making.

Counterfactual statements, e.g., "my headache would be gone had I taken an aspirin” are central to scientific discourse, and are formally interpreted as statements derived from ”alternative worlds”. However, since they invoke hypothetical states of affairs, often incompatible with what is actually known or observed, testing counterfactuals is fraught with conceptual and practical difficulties. In this paper, we provide a complete characterization of ”testable counterfactuals,” namely, counterfactual statements whose probabilities can be inferred from physical experiments. We provide complete procedures for discerning whether a given counterfactual is testable and, if so, expressing its probability in terms of experimental data.

Counterfactual quantities representing pathspecific effects arise in cases where we are interested in computing the effect of one variable on another only along certain causal paths in the graph (in other words by excluding a set of edges from consideration). A recent paper [Pearl, 2001] details a method by which such an exclusion can be specified formally by fixing the value of the parent node of each excluded edge. In this paper we derive simple, graphical conditions for experimental identifiability of path-specific effects, namely, conditions under which path-specific effects can be estimated consistently from data obtained from controlled experiments.