This paper presents a predictive modeling framework for GPU performance. The key innovation underlying this approach is that performance statistics collected from representative workloads running on current generation GPUs can effectively predict the performance of next-generation GPUs. This is useful when simulators are available for the next-generation device, but simulation times are exorbitant, rendering early design space exploration of microarchitectural parameters and other features infeasible. When predicting performance across three Intel GPU generations (Haswell, Broadwell, Skylake), our models achieved low out-of-sample-errors ranging from 7.45% to 8.91%, while running 30,000-45,000 times faster than cycle-Accurate simulation.