This paper presents a stochastic model predictive control approach for
nonlinear systems subject to time-invariant probabilistic uncertainties in
model parameters and initial conditions. The stochastic optimal control problem
entails a cost function in terms of expected values and higher moments of the
states, and chance constraints that ensure probabilistic constraint
satisfaction. The generalized polynomial chaos framework is used to propagate
the time-invariant stochastic uncertainties through the nonlinear system
dynamics, and to efficiently sample from the probability densities of the
states to approximate the satisfaction probability of the chance constraints.
To increase computational efficiency by avoiding excessive sampling, a
statistical analysis is proposed to systematically determine a-priori the least
conservative constraint tightening required at a given sample size to guarantee
a desired feasibility probability of the sample-approximated chance constraint
optimization problem. In addition, a method is presented for sample-based
approximation of the analytic gradients of the chance constraints, which
increases the optimization efficiency significantly. The proposed stochastic
nonlinear model predictive control approach is applicable to a broad class of
nonlinear systems with the sufficient condition that each term is analytic with
respect to the states, and separable with respect to the inputs, states and
parameters. The closed-loop performance of the proposed approach is evaluated
using the Williams-Otto reactor with seven states, and ten uncertain parameters
and initial conditions. The results demonstrate the efficiency of the approach
for real-time stochastic model predictive control and its capability to
systematically account for probabilistic uncertainties in contrast to a
nonlinear model predictive control approaches.