Earthshine is the dominant source of natural illumination on the surface of
the Moon during lunar night, and at locations within permanently shadowed
regions that never receive direct sunlight. As such, earthshine may enable the
exploration of areas of the Moon that are hidden from solar illumination. The
heat flux from earthshine may also influence the transport and cold trapping of
volatiles present in the very coldest areas. In this study, Earth's spectral
radiance at the Moon is examined using a suite of Earth spectral models created
using the Virtual Planetary Laboratory (VPL) three dimensional modeling
capability. At the Moon, the broadband, hemispherical irradiance from Earth
near 0 phase is approximately 0.15 watts per square meter, with comparable
contributions from solar reflectance and thermal emission. Over the simulation
timeframe, spanning two lunations, Earth's thermal irradiance changes less than
a few mW per square meter as a result of cloud variability and the
south-to-north motion of sub-observer position. In solar band, Earth's
diurnally averaged light curve at phase angles < 60 degrees is well fit using a
Henyey Greenstein integral phase function. At wavelengths > 0.7 microns, near
the well known vegetation "red edge", Earth's reflected solar radiance shows
significant diurnal modulation as a result of the longitudinal asymmetry in
projected landmass, as well as from the distribution of clouds. A simple
formulation with adjustable coefficients is presented for estimating Earth's
hemispherical irradiance at the Moon as a function of wavelength, phase angle
and sub-observer coordinates. It is demonstrated that earthshine is
sufficiently bright to serve as a natural illumination source for optical
measurements from the lunar surface.