We present a method for computing a basis of localized orthonormal orbitals (both occupied and virtual), in whose representation the Fock matrix is extrememly diagonal-dominant. The existence of these orbitals is shown empiricaly to be sufficient for achieving highly accurate MP@ energies, calculated according to Kapuy's method. This method (which we abbreviate KMP2), which involves a different partitioning of the n-electron Hamiltonian, scales at most quadratically with potential for linearity in the number of electrons. As such, we believe the KMP2 algorithm presented here could be the basis of a viable approach to local correlation calculations.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.