There is increasing evidence that the phase of ongoing oscillations plays a role in neural coding, but its relative importance throughout the brain has yet to be understood. We assessed single-trial phase coding in four temporal lobe and four frontal lobe regions of the human brain using local field potentials (LFPs) recorded during a card-matching task. In the temporal lobe, classification of correct/incorrect matches based on LFP phase was significantly better than classification based on amplitude and comparable to the full LFP signal. Surprisingly, in these regions, the correct/incorrect mean phases became aligned to one another before they diverged and coded for trial outcome. Neural responses in the amygdala were consistent with a mechanism of phase resetting, while parahippocampal gyrus activity was indicative of evoked potentials. These findings highlight the importance of phase coding in human medial temporal lobe and suggest that different brain regions may represent information in diverse ways.