- Mitchell, Jacqueline C;
- Constable, Remy;
- So, Eva;
- Vance, Caroline;
- Scotter, Emma;
- Glover, Leanne;
- Hortobagyi, Tibor;
- Arnold, Eveline S;
- Ling, Shuo-Chien;
- McAlonis, Melissa;
- Da Cruz, Sandrine;
- Polymenidou, Magda;
- Tessarolo, Lino;
- Cleveland, Don W;
- Shaw, Christopher E
Introduction
Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder, and cytoplasmic inclusions containing transactive response (TAR) DNA binding protein (TDP-43) are present in ~90 % of cases. Here we report detailed pathology in human TDP-43 transgenic mice that recapitulate key features of TDP-43-linked ALS.Results
Expression of human wild-type TDP-43 (TDP-43(WT)) caused no clinical or pathological phenotype, while expression of Q331K mutant (TDP-43(Q331K)) resulted in a non-lethal age-dependent motor phenotype, accompanied by cytoplasmic TDP-43 aggregation, mild neuronal loss, with astroglial and microglial activation in the motor cortex and spinal cord at 24 months. However, co-expression of WT and Q331K mutant (TDP-43(WTxQ331K)) resulted in an extremely aggressive motor phenotype with tremor from 3 weeks and progressive hind-limb paralysis necessitating euthanasia by 8-10 weeks of age. Neuronal loss and reactive gliosis was observed in the spinal cord and layer V region of the cortex, with TDP-43, ubiquitin and p62 cytoplasmic inclusions and an increase in insoluble TDP-43. Nuclear clearance of TDP-43 was not observed in TDP-43(Q331K) mice but was seen in 65 % of aggregate containing spinal cord motor neurons in TDP-43(WTxQ331K) mice.Conclusions
We hypothesise that cytoplasmic TDP-43(Q331K) aggregates facilitate the recruitment of WT protein in compound animals, which dramatically accelerates neurodegeneration and disease progression. The exploration of disease mechanisms in slow and rapid disease models of TDP-43 proteinopathy will help elucidate novel drug targets and provide a more informative platform for preclinical trials.