- Samdin, Tuan;
- Wierzbicki, Michal;
- Kreutzer, Adam;
- Howitz, William;
- Valenzuela, Mike;
- Smith, Alberto;
- Sahrai, Victoria;
- Truex, Nicholas;
- Klun, Matthew;
- Nowick, James
This paper describes the synthesis, solution-phase biophysical studies, and X-ray crystallographic structures of hexamers formed by macrocyclic β-hairpin peptides derived from the central and C-terminal regions of Aβ, which bear tails derived from the N-terminus of Aβ. Soluble oligomers of the β-amyloid peptide, Aβ, are thought to be the synaptotoxic species responsible for neurodegeneration in Alzheimers disease. Over the last 20 years, evidence has accumulated that implicates the N-terminus of Aβ as a region that may initiate the formation of damaging oligomeric species. We previously studied, in our laboratory, macrocyclic β-hairpin peptides derived from Aβ16-22 and Aβ30-36, capable of forming hexamers that can be observed by X-ray crystallography and SDS-PAGE. To better mimic oligomers of full length Aβ, we use an orthogonal protecting group strategy during the synthesis to append residues from Aβ1-14 to the parent macrocyclic β-hairpin peptide 1, which comprises Aβ16-22 and Aβ30-36. The N-terminally extended peptides N+1, N+2, N+4, N+6, N+8, N+10, N+12, and N+14 assemble to form dimers, trimers, and hexamers in solution-phase studies. X-ray crystallography reveals that peptide N+1 assembles to form a hexamer that is composed of dimers and trimers. These observations are consistent with a model in which the assembly of Aβ oligomers is driven by hydrogen bonding and hydrophobic packing of the residues from the central and C-terminal regions, with the N-terminus of Aβ accommodated by the oligomers as an unstructured tail.